EXAMEN CLINIQUE DU RACHIS CERVICAL
L'examen clinique du rachis cervical

Pierre CORNELIS, Gérard HATESSE,
Service de médecine physique, Hôpital-Dieu de Paris

Le 5 juin dernier, l'AFMO organisait une journée AFMO-Hôtel-Dieu sur le thème de l'examen clinique du rachis à l'aune de la médecine fondée sur des preuves. Cette journée connut un beau succès d'affluence et d'intérêt, en raison de l'originalité du thème traité. Nous donnons ici le rapport de l'atelier consacré à l'examen du rachis cervical, dans sa version définitive.

Nous nous proposons de rafraîchir nos connaissances sur le rachis cervical et de revoir les tests cliniques qui permettent de faire la différence entre une cervicalgie commune et une pathologie neurologique cervicale compressive avec radiculopathie ou une névralgie cervico-brachiale.

Anatomie palpatoire

Les repères osseux

Les repères osseux offrent une première approche topographique de la région cervicale : occi de l'angle de la mandibule est sur la même horizontale que C4 et articulations temporo-mandibulaires, omoplates, articulations acromio-claviculaires et sternoclavículaires, manubrium, première côte, voire rachis thoracique haut ou même articulations gléno-humérales. Certains d'entre eux permettent une localisation plus fine. C'est ainsi que le processus transverses de C1 (atlas) est très saillant et palpable en creux la branche montante de la mandibule et le muscle sterno-cleido-mastoïdien (fig. 1).

Le processus épineux de C2 (axis) est perçu sur un rachis cervical en position neutre, en dessous de la crête occipitale, au dessous d'une pente de dépression. Si l'on place un doigt en dessous de celle-ci, on palpe l'épineuse de C2, mieux perçue si l'on réalise

Fig. 1 : Palpation de la région interne de l'œil.

Fig. 2 : Deux repères importants, toujours palpables : l'épineuse de C2 (en haut) et celle de C7 en bas.
des petits mouvements de flexion-extension de la tête. Le processus épineux de C7 est long et saillant. Il est bien visualisé lors d’une flexion complète du rachis cervical (fig. 2) et peut-être différencié de l’épineuse de T1 par des manoeuvres de rotation et d’extension de la tête. En effet, C7 est mobile alors que T1 reste fixe. Le rachis cervical en position neutre, le praticien place la pulpe de son index sur l’épineuse de C7 et la pulpe de son médius sur l’épineuse de T1. Lors des mouvements de rotation de la tête à droite et à gauche, on perçoit un léger mouvement au niveau de C7 mais pas sur T1. Lors d’un mouvement d’extension du rachis cervical l’apophyse épineuse de C7 disparaît dans la lös-cervicale physiologique alors que le processus épineux de T1 reste immobile.

Les processus articulaires postérieurs des vertèbres cervicales sont palpables, les doigts placés juste en avant du muscle trapèze, sur un patient en décubitus dorsal. Ils sont mieux perçus si l’on associe à cette palpation des petits mouvements de latéroflexion alternés du rachis cervical.

La palpation articulaire du rachis cervical haut (C1 et C2) est assez limitée. De C3 au rachis thoracique, seule la pression-friction permet d’accéder aux articulations zygapophysaires (qui sont profondes de C4 à C6). L’articulation C2-3 est la plus haute que l’on puisse palper, une douleur à ce niveau peut cependant traduire une dysfonction plus haute C1-C2 ou même C0-C1.

Les repères musculaires

La palpation musculaire apprécie la tension et la douleur de certains muscles, de la contracture irréductible au petit cordon myalgique, ceci plus particulièrement au niveau des muscles sub-occipitaux, splénium, semispinaux, levator scapulae, trapèze voire SCM...et même masticateurs. Les reliefs musculaires sont bien mis en évidence lors d’une mise en tension de ceux-ci par un mouvement de contraction contre résistance (fig. 3).

La chef supérieur du trapèze est facilement perçu dans l’angle cervico-scalaire. L’élévateur de la scapula a son insertion basse sur l’angle supéro-interne de la scapula qui est plus accessible que ses insertions hautes sur les quatre premières transverses. Les splénium ne sont pas individualisables entre les muscles trapèzes en arrière, l’élévateur de la scapula en bas et le muscle SCM en avant. En revanche l’insertion basse du splénium du cou est pal- pable sur la face latérale de l’épineuse de T4. Les semispinaux, volumineux et parallèles, sont chacun composés de deux portions, le s. capitis, tendu de l’écaille occipitale jusqu’aux articulations zygapophysaires de C4 à C6 et aux transverses de C7 à T6 et le s. cervicis, né des épineuses de C2 à C5 et descendant jusqu’aux articulations zygapophysaires de C4 à C7 et aux transverses de T1 à T6, souvent tendu et douloureux à la pression du côté d’une céphalée de tension. Les trois coups des figures 4, 5 et 6 permettent de mieux situer ces différents muscles.

La palpation cutanée

La palpation cutanée permet de rechercher des zones de cellu- lalie qui révéleront alors le niveau d’un dérangement douloureux intervertébral mineur (DDIM), depuis le cuir chevelu jusqu’au thorax supérieur (voir plus loin les dermatomes).

Examen clinique

La mobilité cervicale globale est explorée, sur un patient assis, par la flexion et l’extension, la latéro-flexion et la rotation droite et gauche. Les résultats sont transcrits sur le schéma en étoile en précisant l’intensité douloureuse (+, ++ ou +++), la limitation de mobilité (I, II ou III) et un éventuel passage douloureux (o) dans une des directions. On peut déjà, par le schéma en étoile, prévoir dans quelles directions le geste manipulatif sera orienté (s’il est indiqué). C’est la règle de la non-douleur, dans le sens où le mouvement passif est indolore, de direction opposée à la mobilisation passive douloureuse, le geste manipulatif exploite alors le principe du mouvement contraire.

La mobilité cervicale haute s’explore par le « oui-oui occipito- atlasien » C0-C1 et le « non-non » atl-axioïden C1-C2. La rotation de C2 s’explore en flexion maximale du menton sur le sternum. On tourne la tête en frottant le menton sur le thorax. On n’oubliera pas d’analyser la mobilisation axiale par traction de la tête, patient assis ou couché ou par compression en lui « ren- trant » la tête dans les épaules ; la traction soulage-t-elle, la compression agrave-t-elle une lésion potentielle ?

Les lois de Marsman nous indiquent qu’une légère asymétrie des amplitudes de mobilisation est physiologique et prévisible par un examen objectif. L’examen clinique permet ainsi de définir un
mouvement préférentiel qui retrouve et analyse des mouvements de flexion-extension, latéro-flexion et rotation asymétriques.

L'examen segmentaire codifié du rachis cervical repose essentiellement sur la pression-friction des massifs articulaires postérieurs, en effet seule l'épineuse de C7 est accessible à une pression axiale ou latérale et les ligaments interépineux sont trop profonds. Signalons l'intérêt du point sonnette, par appui sur la partie antérieure du rachis cervical bas.

L'examen neurologique est connu de tous, motricité, sensibilité, ROT et, dans des cas particuliers, bilan cérébelleux et oculomoteur, pyramidal, extrapyramidal, etc. On n'oubliera pas la recherche d'un signe de Lhermitte : sensation de décharge électrique descendante vers le dos à la flexion poussée du cou et faisant évoquer SEP, syringomyélie, compression médullaire, etc.

L'examen postural analyse l'oculomotricité, les phories (orientation des globes oculaires dans les orbites), l'œil viseur, l'ergonomie, les zones de surmenage musculo-squelettique, les compensations cervicales d'une entrée posturale, l'oculocéphalographie et les mouvements préférentiels tête-cou-tronc, avec contrôle radiographique.
Préventions des accidents manipulatifs

Les tests de posture ou de compression semblent non prouvés. Ils gardent cependant un intérêt médico-légal non négligeable.

Le test de posture ne dispense pas d’un interrogatoire minutieux, à rapprocher du bilan biologique, radiologique ou doppler, en sachant évoquer le risque chez la femme jeune, gravide, fumeuse et sous oestro-progestatifs. Le test est réalisé en hyperextension et rotation droite puis gauche maintenue au moins 30 secondes, patient assis ou couché, en recherchant l’apparition d’un vertige, d’un nystagmus, d’une diplopie, d’une baisse de vigilance etc. Son intérêt médico-légal est certain. Le test de Rancurel se réalise en comprimant les artères vertébrales au niveau du triangle de Tillaux en position debout, à droite puis à gauche et enfin des deux côtés simultanément.

Reproductibilité de l’examen clinique du rachis cervical

Nous utiliserons le coefficient de reproductibilité kappa (\(\kappa \)) qui mesure la proportion entre un accord ou un rejet des résultats, une fois le facteur hasard enlevé, afin de surveiller l’intérêt des différents gestes diagnostiques (tableau 1). Parfois on utilisera plutôt le rapport sensibilité / spécificité (se/sp), idéalement 100% sur 100% ou 1,0 sur 1,0 ou le coefficient de corrélation intraclasse CCI de 0,0 à 1,0.

Les tests radiculaires et leur reproductibilité

Un nombre impressionnant de tests sont supposés mettre en évidence une compression radiculaire cervicale.

Compression axiale verticale sur patient assis, avec l’examineur debout derrière lui. Celui-ci exerce une pression verticale sur la tête destinée à comprimer le rachis cervical. Le test est positif s’il provoque douleur ou irradiation. \(k = 0,4 \).

| Tableau 1 - Degré d’accord et valeur de Kappa |
|-----------------|-----------------|
| Accord | Kappa |
| Excellent | \(\geq 0,81 \) |
| Bon | 0,80 - 0,61 |
| Modéré | 0,60 - 0,41 |
| Médiocre | 0,40 - 0,21 |
| Mauvais | 0,20 - 0,0 |
| Très mauvais | < 0,0 |

Spurling basique. Le patient en latérocupitus, on réalise une extension active du cou avec latéroflexion et rotation homolatérale (fig. 7). L’examineur applique une compression axiale sur le rachis cervical. Le test est positif s’il provoque une douleur ou une irradiation. \(k = 0,5 \).

Spurling test A. Le patient est assis, le cou en latéroflexion du côté douloureux, 7 kilos de surpression sont appliqués verticalement sur le rachis (fig. 8). Le test est positif si les symptômes sont reproduits. \(k = 0,6 \).

Spurling test B. Le patient est assis, cou en extenseion inclinaison et rotation homolatérale et 7 kilos de surpression sont appliqués (fig. 9). Le test est positif si les symptômes sont reproduits. \(k = 0,6 \).

Slump test (slump = avachissement) ou Lasègue cervical, patient assis bras croisés dans le dos, la flexion du rachis cervical est sensibilisée par la flexion maximale sur le bassin de l’un ou des deux membres inférieurs, cheville en flexion dorsale maximale. \(k \) non retrouvé.
Les compressions combinées, sur un patient assis, l'examinateur applique une compression axiale verticale de 7 kilos, tout en provoquant une latéroflexion et une rotation homolatérale ou croisée. \(k = 0.4 \).

Test de traction axiale du cou. Le patient est assis ou en décubitus. L'examineur est debout derrière lui, les mains appliquées de chaque côté sur les mandibules et l'écaill occipitale. Le test est positif si les symptômes se réduisent pendant la traction. \(k = 0.5 \).

Test de distraction du cou. Le patient est en décubitus dorsal. L'examineur applique un étirement en saisissant le menton et l'écaill occipitale du patient, tout en lui imprimant une légère flexion cervicale et en appliquant force de distraction de 7 kilos. Le test est positif si les symptômes diminuent. \(k = 0.9 \).

Abduction de l'épaule. On demande au patient de placer sa main, paume en haut sur le sommet de sa tête. Le test est positif si les symptômes sont atténués. \(k = 0.2 \).

Test de Spurling brachial. Encore un ! Ce test associe à la rotation-extension du rachis cervical une abduction-rétropulsion-rotation externe du bras, qui peut révéler un test d'accroître la douleur, à rapprocher des deux tests suivants.

Étièrement du membre supérieur, test A. Le patient est en décubitus dorsal et l'examineur réalise : appui sur la gléno-humérale, abduction et rotation externe de l'épaule, supination de l'avant-bras avec extension du coude et du poignet, inclinaison homo et contrôle latérale du cou (fig. 10). \(k = 0.8 \).

Étièrement du membre supérieur, test B. Le patient est en décubitus dorsal, appui sur la gléno-humérale, l'épaule en abduction de 30°, l'examineur effectue une rotation interne de l'épaule, coude en extension, poignet et doigts fléchis, avec inclinaison homo et contrôle latérale du cou (fig. 11). \(k = 0.8 \).

Étièrement et rotation cervicale. Le patient est assis. Une main fixant son épaule, l'examineur tire l'avant-bras en bas et en avant pour tenter de reproduire la douleur spontanée. Le patient regarde du côté du bras étiré. Valeur se/sp 0,9-1,0.

Test de compression du plexus brachial. Il se fait au pouce, en arrière de l'insertion basse du scalène antérieur, il est positif s'il provoque une irradiation vers le membre supérieur. \(k = 0.7 \).

Test du plexus brachial. Le patient est en décubitus dorsal, l'épaule en abduction extrême avant douleur et le coude fléchi. On augmente progressivement l'abduction jusqu'à 90° pour déclencher ou trouble esthétique. \(k = 0.35 \).

Test de cisaillement du rachis cervical supérieur. Le patient est assis cou demi-fléchi. L'examineur pousse le front du patient vers l'arrière d'une main et exerce une contre-pous-

Fig. 9 : Test B de Spurling.

Fig. 10 : Étièrement du membre supérieur, test A.

Fig. 11 : Étièrement du membre supérieur, test B.

sée sur les épineuses de C2-C3 avec le bord radial de son autre main (fig. 12). La perception d'un glissement traduit une instabilité atlanto-axoidienne. Valeur se/sp 0,7/1.

Test de sensibilité au pique touche. On note le niveau discriminatoire de la perception, normale, accrue ou diminuée. Valeur se sur sp : 0,2/0,8.

Evaluation des réflexes ostéotendineux. Valeur se sur sp : 0,1/0,9.
Les tests pour la cervicalgie commune et leur reproductibilité

Les faits rapportés par le patient lors de l’interrogatoire ont globalement une bonne reproductibilité (tableau 2).

L’évaluation des mobilités
Nous suivons les données du schéma en étoile : flexion (F), extension (E), rotation droite (RD), rotation gauche (RG), latéroflexion droite (LFD) et latéroflexion gauche (LFG).

L’évaluation globale des amplitudes de mobilité en flexion, extension, rotations et latéroflexions a une bonne reproductibilité tant avec un inclinomètre (fiabilité CC = 0,7) qu’une évaluation visuelle (fiabilité : 0,6). Cette dernière est toutefois moins fiable surtout pour la flexion et l’extension (0,4). J.Y. Maigne retrouve une reproductibilité interobservateur plus acceptable avec des coefficients kappa à 0,6 en rotation, 0,7 en flexion et 0,8 en extension.

L’évaluation segmentaire intervertébrale des amplitudes de mobilité est en revanche de très mauvaise reproductibilité et ce quel que soit l’étage concerné, de C0-C1 à C7-T1. L’indice kappa est à 0,3 en Flex, Ext, Rot et de 0,1 à 0,3 en L.F.J.Y. Maigne retrouve une reproductibilité interobservateur acceptable avec un kappa moyen à 0,53.

Cependant, et ce point est fondamental, un examen segmentaire positif ne peut en aucun cas affirmer l’étiologie de la douleur : zygapophysaire, foramen, disque, os-périoste ou muscles ?

L’étude des mobilisations actives du patient est plus fiable : dans les six direction du schéma en étoile k = 0,6-0,7, en flexion-extension haute k = 0,4-0,6, en flexion-extension globale k = 0,5-0,7.

La rotation douloureuse comparative est mieux ressentie en fin de course, elle se fait à 50% sur le rachis cervical haut. La distance menton épaule en rotation maximale est un bon repère.

Selon Cyriaux, la douleur en flexion serait d’origine durée-méritenne. Enfin, on peut retenir que l’extension diminue le diamètre du foramen intervertébral. Quelle est la signification d’une limitation isolée de mobilité ?

Évaluation d’une douleur à la palpation des épines : C2 et C3, kappa=0,5 ; de C4 à C7 kappa=0,5 ; pour T1, T2 et T3, kappa=0,6. Pour la douleur provoquée à la pression des zygapophyses : C2 et C3, kappa=0,1 ; C4 et C5, kappa=0,4 ; C6 et C7, kappa=0,3.

Une pression antérieure modérée sur le rachis cervical inférieur peut révéler un point sonnette en déclenchant une douleur para vertébrale T5 homolatérale (point inter scapulaire).

Pour certains auteurs (J. Cleland) le déclenchement d’une douleur à la palpation est peu fiable et la reproductibilité inter examineur médiocre, que le praticien connaisse ou non l’histoire la maladie du patient. En revanche, l’étude menée par J.Y. Maigne a retrouvé une bonne reproductibilité inter examineur à la palpation des articulations postérieures, avec un kappa à 0,53. De même, la palpation des masses musculaires et de leurs insertions douloureuses offre une bonne reproductibilité avec un kappa moyen à 0,44, acceptable. De plus, une douleur musculaire précise est difficile à rattacher à un étage cervical précis mais l’association de plusieurs points douloureux musculaires reflète bien la gêne fonctionnelle ressentie par le patient (très bonne corrélation entre le nombre de points douloureux et les résultats d’un questionnaire de gêne fonctionnelle).

Tentative de synthèse
Il est bien évident que le fait de travailler sur du vivant et de l’humain ne permettra jamais d’autour à une fiabilité idéale, “industrielle”, d’autant que le ou les examineurs sont eux aussi imparfaits... L’étude réalisée dans le service de l’Hôtel-Dieu à Paris montre cependant une reproductibilité interobservateur acceptable de l’examen classique segmentaire qui corrélée aux autres données (interrogatoire, tests cliniques, radios etc.) permet une bonne approche diagnostique avec k >0,4.
Il est à noter que dans le service une autre étude à l’aveugle est actuellement en cours pour savoir si le praticien ne connaissant pas l’histoire du patient, est capable, par la simple palpation et sans aucune mobilisation, de retrouver le côté douloureux spontané. Ici aussi, la palpation des massifs musculaires des trapèzes et des muscles cervicaux supérieurs semblent plus pertinente. La cellulalgie est moins fiable.

Attention : la palpation vigoureuse des masses musculaire est toujours douloureuse, de plus elle doit être comparative en ne retenant que les différences significatives.

Si chacune des données de l’examen clinique offre une performance acceptable, la congruence permet souvent d’atteindre un bon degré de fiabilité clinique : une cervicalgia avec cellulalgie basse, douleur du levator scapulae, sans perturbation des réflexes avec douleur à la pression des épinesuses et des zygapophysaires moyennes oriente raisonnablement vers C4...

Au niveau des tests cliniques, le regroupement d’informations à bonne valeur prédictive aboutit à un faisceau d’arguments qui améliore la fiabilité, c’est le groupement d’éléments de test ou GET.

Pour une radiculopathie cervicale cinq tests sont plus pertinents : l’étirement A du membre supérieur, le Spurling A, la distraction cervicale, la rotation homolatérale positive en dessous de 60° et la traction brachiale avec rotation homolatérale de la tête. Avec deux tests positifs, la probabilité de radiculopathie est de 21 %, elle monte à 65 % avec trois tests et plafonne à 90 % avec les quatre tests positifs. Sans oublier{paragraph}e perte de force musculaire, les dysesthésies ou douleurs neuropathiques, ou la névralgie cervicobrachiale.

Pour l’instabilité du rachis cervical haut, le test de cisaillement semble discriminant.

En cas de hernie discale cervicale, l’extension douloureuse semble pouvoir être retenue ?

En présence d’une cervicalgia non spécifique, quatre tests orientent vers le rhachi : la flexion-extension, le Spurling B, l’étirement A et la friction zygapophysaire.

Au total, le grand nombre de tests et les valeurs relativement modeste des indices de reproductibilité et de fiabilité nous obli-gent à cumuler les informations cliniques en les confrontant à d’autres données radiologiques ou EMG... l’examen clinique comme les explorations paracliniques ne servant qu’à étayer une hypothèse diagnostique.

De plus, un test clinique doit être bien maitrisé pour aboutir à un intérêt diagnostique, et il vaut mieux n’en utiliser que quelques uns mais parfaitement…

Enfin un test même peu fiable peut chez un même patient avoir une valeur analytique de contrôle après un traitement bien mené.

UNE PARTIE DE CET ARTICLE S’APPUIE SUR LE LIVRE DE JOSHUA CLELAND
La Revue de Médecine Manuelle-Ostéopathie existe ; elle est le trait d'union indispensable entre tous les médecins concernés par la pathologie vertébrale commune et ceux qui pratiquent la médecine manuelle-ostéopathie.

Chaque trimestre, la Revue de Médecine Manuelle-Ostéopathie publie des articles de fond, des comptes-rendus de congrès, des techniques manipulatives illustrées et des rubriques professionnelles.

Remplissez dès maintenant le bulletin d'abonnement et profitez de la formule d'abonnement de 2 ans.
1. Trapèze
2. Rhomboïde
3. Dentelé postéro-supérieur
4. Splénius de la tête
5. Splénius du cou
6. Longissimus de la tête
7. Longissimus du cou
8. Semispinalis du cou
9. Semispinalis de la tête
10. Multifidus
11. Elévateur de la scapula
12. Iliocostalis
13. Scalène antérieur
14. Scalène moyen
15. Scalène postérieur
16. Long de la tête et du cou
17. Droit antérieur
18. Sterno-Claido-Mastoïdien
19. Platysma
20. Omo-Hyoïdien
21. Sterno-Thyroïdien
22. Sterno-Hyoïdien